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Abstract
In the problem of Dispersion by mobile robots, 𝑙 robots placed arbi-

trarily on nodes of a network having 𝑛 nodes are asked to relocate

themselves autonomously so that each node contains at most ⌈ 𝑙𝑛 ⌉
robots. When 𝑙 ≤ 𝑛, each node of the network contains at most

one robot. In this work, dispersion has been considered by intro-

ducing another variant called Distance-𝑘-Dispersion (D-𝑘-D), where

the robots have to disperse on a network in such a way that the

shortest distance between any two pairs of robots is at least 𝑘 and

there exist at least one pair of robots for which the shortest dis-

tance is exactly 𝑘 for a dynamic ring (1-interval connected ring) for

rooted initial configuration. Note that, when 𝑘 = 1 we have normal

dispersion, and when 𝑘 = 2 we have Distance-2-Dispersion (D-2-D).

We have proved the necessity of fully synchronous scheduler to

solve this problem and provided an algorithm that solves D-𝑘-D in

Θ(𝑛) rounds under a fully synchronous scheduler. So, the presented
algorithm is time-optimal too. To the best of our knowledge, this is

the first work that considers this specific variant.
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1 Introduction
The problem of dispersion by a swarm of mobile robots is exten-

sively studied in the field of distributed system. In Dispersion prob-

lem (introduced in [2]), the aim is to reposition 𝑙 robots on a graph

with 𝑛 nodes in such a way that each node contains at most ⌈ 𝑙𝑛 ⌉
robots. So when 𝑙 ≤ 𝑛, each node must contain at most 1 robot.

In this work, we have studied a special type of dispersion prob-

lem, called Distance-𝑘-Dispersion aka D-𝑘-D problem on a specific
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graph topology which is a 1-interval connected ring having 𝑛 nodes,

assuming the initial configuration is a rooted configuration with

𝑙 ≤ ⌊𝑛
𝑘
⌋ mobile robots. In D-𝑘-D, the robots disperse themselves

autonomously in such a way so that the distance between any two

occupied nodes is at least 𝑘 and there is at least one pair of oc-

cupied nodes whose distance is exactly 𝑘 , where occupied nodes

contain exactly one robot. For 𝑘 = 1, the problem is equivalent to

the dispersion problem. Also, Distance-2-Dispersion (introduced

in [4]) problem is a special case of D-𝑘-D where 𝑘 = 2. So to the

best of our knowledge, we consider Distance-𝑘-Dispersion for the

first time here on dynamic ring. An intriguing aspect of D-𝑘-D is

its application in maximizing the sensing area with the use of the

fewest agents possible assuming the sensing distance of an agent is

up to 𝑘 hop.

Here we have assumed 1-interval connectivity dynamism where

the adversary can omit at most one edge in a certain round from the

ring without hampering the connectivity. Each robot has a unique

identifier and has weak global multiplicity detection and strong

local multiplicity detection. We have shown that a solution of D-

𝑘-D is not possible on a 1-interval connected dynamic ring for a

semi-synchronous (SSync) scheduler if the initial configuration has

a multiplicity node. Also, a time lower bound (Ω(𝑛) rounds) is given
for the D-𝑘-D algorithm. Then we have provided a deterministic

and distributed algorithm D-𝑘-D DynamicRing, which solves the

D-𝑘-D problem for rooted initial configuration by the robots under

a fully synchronous (FSync) scheduler with chirality (i.e. the par-

ticular notion of orientation: clockwise or counter-clockwise). The

algorithm D-𝑘-D DynamicRing will terminate in 𝑂 (𝑛) rounds and
the algorithm is time optimal as its runtime matches with the lower

bound provided. Observe that, if the robots have no chirality, then

there are some known techniques in [1], applying that chirality can

be achieved so that the robots can agree on a particular direction

(clockwise or counterclockwise). Then one can easily apply the

existing algorithm D-𝑘-D DynamicRing to achieve D-𝑘-D even

considering the set of robots without chirality.

2 Model and Problem Definition
Model: Let R be a ring with 𝑛 consecutive nodes 𝑣0,𝑣1,𝑣2,. . . ,𝑣𝑛−1
in a certain direction (either clockwise or counterclockwise direc-

tion), where the nodes 𝑣𝑖 is connected to both 𝑣𝑖−1 (mod 𝑛) and
𝑣𝑖+1 (mod 𝑛) by edges. These nodes are unlabeled. A dynamic ring

with 𝑛 nodes is considered here. Nodes have no memory. The 1-

interval connectivity dynamism (from [3]), where the adversary can

omit at most one edge from the ring in a certain round without los-

ing the connectivity of the ring, is assumed here. let {𝑟1, 𝑟2, . . . , 𝑟𝑙 }
be a set of 𝑙 robots reside on the nodes of ring R. The robots are
identical i.e. physically indistinguishable and homogeneous i.e. the
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robots execute the same algorithm. Robots can reside only on the

node but not on the path connecting two nodes. Each robot has a

unique label (ID) which is a string of constant length. Robots have

log𝑛 bits of memory for storing their ID, where 𝑛 is the number of

nodes of the graph. But this memory is not updatable. So robots

can’t store anything else persistently. One or more robots can oc-

cupy the same node. If two or more robots are on the same node

they are called co-located.

The robots can communicate with each other only when they

are co-located. In each round, co-located robots in a certain node

can detect the minimum ID robot of that node. Robots have the

ability of strong local multiplicity detection which means the

robot can detect how many robots are present in its node. Robots

have weak global multiplicity detection i.e. robots can detect

if there exists no robot, one robot, or more than one robot in a

particular node within its visibility range. The visibility of a robot

is defined as the number of hops the robot can see another node

which is denoted as 𝜙 . Here 𝜙 ≥ 𝑛/2 i.e. robots can see all the nodes

of the dynamic ring. Robots can detect whether the edge between

two nodes is missing or not and they can move one node to another

node if the edge between them is not missing. The particular notion

of orientation (clockwise or counterclockwise) of the robot in the

ring is called chirality. Here clockwise (CW) and counterclockwise

(CCW) notion of direction is used in the usual sense. The activation

of the robot controlled by an entity is called scheduler. Here robots

work under fully synchronous (Fsync) scheduler where all robots

get activated at the same time and perform look-compute-move

synchronously. In look phase, robots take a snap of their views to

collect information and communicate with the robots of their own

node, then perform computations on the basis of their look phase

and determine whether to move or not and in which direction in

the compute phase. The robots that are decided to move in the

compute phase, move to their determined direction in move phase.
Robots can move in their determined direction only if the edge in

that direction is not missing.

Initially, all the robots are on the same node, which is called root
node. The ring is always connected. There are two types of nodes:

occupied node and null node. If a node contains a robot then it is

called occupied node. If there is no robot on the node then the node
is called null node. According to the numbers of robots present

on the node occupied node is of two types:multiplicity node,
singleton node. Multiplicity node contains multiple number of

robots and singleton node contains only one robot. The robot on

a singleton node can be called singleton robot.
Problem Definition: Let 𝑙 robots reside on an 𝑛 node dynamic

ring. Initially, the robots are co-located at a particular node.Without

loss of generality let us assume that node is 𝑣0. In the dispersion

problem, the robots reposition themselves autonomously in such

a way that at each node there is at most one robot. In distance-

𝑘-dispersion (D-𝑘-D) problem, the robots reposition to achieve a

configuration that satisfies the following:

(i) The occupied node contains exactly one robot.

(ii) The distance between any two occupied nodes is at least 𝑘 .

(iii) There exists at least one pair of nodes whose distance is exactly

𝑘 .

3 Impossibility Result and Lower Bound
Theorem 3.1. Distance-𝑘-Dispersion on the dynamic ring is not

possible for a semi-synchronous scheduler if the initial configuration

has a multiplicity node on a 1-interval connected ring.

Theorem 3.2. Any dispersion algorithm on a ring with 𝑛 nodes

from a rooted configuration takes Ω(𝑛) rounds.

Corollary 3.3. Any dispersion algorithm on a 1-interval con-

nected ring with 𝑛 nodes takes Ω(𝑛) rounds to terminate.

Corollary 3.4. Any D-𝑘-D algorithm on a 1-interval connected

ring with 𝑛 nodes takes Ω(𝑛) rounds to terminate.

4 Definitions and Preliminaries
In this section let us describe some useful definitions.

Definition 4.1 (Configuration). A configuration at a round 𝑡 can be

denoted as 𝐶 (𝑡) : (𝑉 , 𝑡, 𝑓 ) where 𝑓 is a function from 𝑉 to {0, 1, 2}
such that

𝑓 (𝑣) =


0, when v is null node at round t

1, when v is single node at round t

2, when v is multiplicity node at round t

An induced sub-graph of the ring R containing the vertices

starting from a node 𝑣𝑥 in the direction D ending at the node 𝑣𝑦
is called an arc and it is denoted as (𝑣𝑥 , 𝑣𝑦)D . For any two nodes

𝑣𝑥 and 𝑣𝑦 on the ring R, the distance between the nodes 𝑣𝑥 and 𝑣𝑦
in a direction D is the number of edges from the node 𝑣𝑥 to 𝑣𝑦 in

directionD and it is denoted as 𝑑D (𝑣𝑥 , 𝑣𝑦). Two occupied nodes 𝑣𝑥
and 𝑣𝑦 on the ring R, are said to be consecutive occupied nodes (Fig 1)
if there exists a direction D (either clockwise or counterclockwise

direction) such that (𝑣𝑥 , 𝑣𝑦)D does not contain any other occupied

node other than 𝑣𝑥 and 𝑣𝑦 .

Figure 1: 𝑣𝑥 and 𝑣𝑦 are consecutive occupied nodes in the arc
(𝑣𝑥 , 𝑣𝑧)D of length 5 in direction D. Black dots represent the
nodes on the ring and blue boxes represent the robots.

Definition 4.2 (Clockwise Chain). Let R be a ring with vertices

𝑣0, 𝑣1, . . . , 𝑣𝑛−1 in clockwise directionD (say). The arc starting from

the node 𝑣𝑖−1 (mod 𝑛) to 𝑣 𝑗 i.e. (𝑣𝑖−1 (mod 𝑛) , 𝑣 𝑗 )D , for some 𝑖, 𝑗 is

called clockwise chain (CW-chain) if

(i) 𝑣𝑖 is multiplicity node, 𝑣 𝑗−1 is occupied node and 𝑣 𝑗 is null

node.

(ii) 𝑑D (𝑣𝑥 , 𝑣𝑦) = 𝑘 , for any two consecutive occupied nodes 𝑣𝑥 ,

𝑣𝑦 ∈ (𝑣𝑖−1 (mod 𝑛) , 𝑣 𝑗 )D .
(iii) 𝑑D (𝑣 𝑗−1, 𝑣𝑝 ) > 𝑘 , for the nearest occupied node 𝑣𝑝 in clock-

wise direction from the node 𝑣 𝑗−1.
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similarly one can define counterclockwise chain (CCW-chain)

considering counterclockwise direction.

Definition 4.3 (Chain Configuration and its range). A configu-

ration that contains both clockwise and counterclockwise chains,

is called chain configuration (Fig 2). In a chain configuration, the

maximum size arc of the ring R such that every node on that arc

is contained in at least one chain is called the range of the chain

configuration.

Figure 2: Chain configuration where (𝑣𝑖−1, 𝑣 𝑗 )D is a chain in
clockwise direction D and (𝑣𝑖+1, 𝑣0)D′ is a chain in counter
clockwise direction for 𝑘 = 3.

If the configuration is not chain configuration then it is called

non-chain configuration. In a chain configuration, a chain is called

a good chain if the chain contains no missing edge. Otherwise, it

is called a bad chain. There are three types of chain configuration:

chain configuration containing two good chains, containing one

good chain, and one bad chain, containing two bad chains. A con-

figuration is called dispersed configuration if there is no multiplicity

node.

(a) Both Chain good chain (b) one good and one bad chain

(c) Both chain bad chain

Figure 3: Different types of chain configuration for 𝑘 = 3

Definition 4.4 (Head). In a dispersed configuration, if there exists

exactly one pair of occupied nodes 𝑣𝑥 and 𝑣𝑦 on the ring R such

that 𝑑D (𝑣𝑥 , 𝑣𝑦) < 𝑘 for clockwise direction D, then 𝑣𝑥 is called

the head and denoted as 𝐻 .

Definition 4.5 (Block). LetR be a ringwith vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛−1
in a directionD. The arc starting from the node 𝑣𝑖 to 𝑣 𝑗 i.e. (𝑣𝑖 , 𝑣 𝑗 )D ,
for some 𝑖, 𝑗 with maximum arc length is called a block in direction

D if

(i) 𝑣𝑖 is a multiplicity node or head.

(ii) 𝑣 𝑗 is a null node and 𝑣 𝑗−1 is occupied node, where 𝑣 𝑗−1 is the
node adjacent to 𝑣 𝑗 in the arc (𝑣𝑖 , 𝑣 𝑗 )D .

(iii)(a) 𝑑D (𝑣𝑥 , 𝑣𝑦) = 𝑘 , for all consecutive occupied nodes 𝑣𝑥 ,

𝑣𝑦 ∈ (𝑣𝑖 , 𝑣 𝑗 )D
or, (b) 𝑑D (𝑣𝑖 , 𝑣𝑧) < 𝑘 , where 𝑣𝑖 and 𝑣𝑧 are consecutive occupied

nodes ∈ (𝑣𝑖 , 𝑣 𝑗 )D and 𝑑D (𝑣𝑥 , 𝑣𝑦) = 𝑘 , for all consecutive occupied

nodes 𝑣𝑥 , 𝑣𝑦 ∈ (𝑣𝑧 , 𝑣 𝑗 )D
(iv) 𝑑D (𝑣 𝑗−1, 𝑣𝑝 ) > 𝑘 , for the nearest occupied node 𝑣𝑝 in direc-

tion D from the node 𝑣 𝑗−1.

The node 𝑣𝑖 is called block head. For a block conditions (iii)(a)

and (iii)(b) can not satisfy simultaneously. In a block if condition

(iii)(a) is satisfied it is called a chain block otherwise if condition

(iii)(b) is satisfied it is called a non-chain block.

(a) Block configuration. (b) Dispersed configuration.

Figure 4: Different types of non-chain configuration for 𝑘 = 3

Definition 4.6 (Target Configuration). A dispersed configuration

is said to be target configuration (𝐶𝑇 ) if, 𝑑D (𝑣𝑥 , 𝑣𝑦) ≥ 𝑘 , for all

consecutive occupied nodes 𝑣𝑥 , 𝑣𝑦 on the ring R, whereD be either

CW direction and CCW direction.

Figure 5: Target Configuration of D-𝑘-D where 𝑘 = 3
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(a) Chain configuration. (b) Non-chain configuration.

Figure 6: Chain to non-chain configuration

5 Discussion of algorithm and correctness
In this section, the main idea of D-𝑘-D has been discussed. All

the robots are initially placed on a particular node i.e., the con-

figuration is rooted initially. The robots have chirality i.e., they

agree on a particular direction (without loss of generality, let the

direction be clockwise). The main task is divided into two sub-

tasks. If the configuration is a chain configuration (Fig. 2), then

a robot, say 𝑟 on chain executes the algorithm Spread(𝑟 ) (Algo-

rithm 2). If the configuration is not a chain configuration (Fig. 4(a))

then the robots reconstruct the chain configuration by executing

ReconstructChain(𝑟 ) (Algorithm 3). The main aim is to form the

target configuration (𝐶𝑇 ) (Fig. 2) where the distance between two

consecutive occupied nodes is at least 𝑘 . Note that initially, the

rooted configuration is a chain configuration. The idea is to spread

the range of the chain configuration by relocating one more agent

from the multiplicity node to a null node (thus number of robots on

multiplicity decreases). Now since the ring is 1-interval connected,

to achieve a spread maintaining the chain configuration might not

be possible. This ends up resulting in a non-chain configuration

(Fig 6). In this scenario, the aim becomes reconstructing a chain

configuration from the non-chain configuration while maintaining

the number of robots on the multiplicity (Fig 7). So a combination of

Spread(𝑟 ) followed by finite consecutive execution (at most 𝑘 − 1)
of ReconstructChain(𝑟 ), the configuration spreads the range of

the chains while reducing the number of robots on the multiplicity

point by one. We call an execution of Spread(𝑟 ) followed by a finite

consecutive (at most 𝑘 − 1) execution of ReconstructChain(𝑟 )

until a chain configuration is reached, an iteration. Note that an it-

eration can be at most of 𝑘 rounds. So for 𝑙 robots within 𝑙 iteration,

the configuration will be dispersed. Then from the disperse config-

uration within at most 𝑘 − 1 execution of ReconstructChain(𝑟 ),

the configuration becomes 𝐶𝑇 (Fig. 5).

Algorithm 1: D-𝑘-D DynamicRing(𝑟 )

1 if chain configuration then
2 Execute Spread(𝑟 );

3 else
4 Execute ReconstructChain(𝑟 );

Subroutine Spread(𝑟 ): During the execution of the algorithm

at any round, the configuration can be chain configuration. In chain

configuration two chains exist, one is CW-chain another is CCW-

chain. Then three cases can arise: both are good chains, one chain

is good another is bad, and both are bad chains (Fig 3). Initially, all

(a) Non-chain configuration. (b) Chain configuration.

Figure 7: Non-chain to chain configuration

Algorithm 2: Spread(𝑟 )
1 if 𝑟 is on multiplicity node then
2 if 𝑟 has the least ID among all nodes on the same node then
3 if both chains are good chains then
4 D ←− counter-clockwise direction;

5 else if exactly one chain is a bad chain then
6 D ←− direction of the good chain;

7 else if both chains are bad chains then
8 D ←− direction in which multiplicity node has no adjacent

missing edge;

9 𝑟 moves in direction D;

10 else
11 if both chains are good chains then
12 if 𝑟 is on counter-clockwise chain then
13 𝑟 moves in counter-clockwise direction;

14 else if exactly one chain is a bad chain then
15 D ←− direction of the good chain;

16 if 𝑟 is on good chain then
17 𝑟 moves in direction D;

18 else if both chains are bad chains then
19 D ←− direction in which multiplicity node has no adjacent missing

edge;

20 if 𝑟 is on the chain in direction D then
21 𝑟 moves in direction D;

the robots are at the same node which is called the root i.e. the ini-

tial configuration is rooted configuration. Note that this is a chain

configuration by Definition 4.3. If the configuration contains two

good chains, then either there is no missing edge or the missing

edge is not in any chain. In this case, the robots on singleton nodes

of the CCW chain move in the counterclockwise direction. The

robots on the multiplicity can find the least ID robot by exploiting

local communication. The robot with the least ID on the multiplic-

ity moves in the counter clockwise direction. If the configuration

contains one good chain and one bad chain, then the missing edge

is on the bad chain but not adjacent to the multiplicity node. Let D
be the direction (either CW or CCW) from multiplicity in which

the good chain exists. In this case, all singleton robots on the good

chain and the least ID robot on multiplicity move in direction D. If

the configuration contains two bad chains, then the missing edge

is adjacent to multiplicity which is contained in both chains. This

missing edge must be next to the multiplicity node either in the

clockwise direction or in the counterclockwise direction. Let D
be the direction in which multiplicity has no missing edge. In this

case, the least ID robot on multiplicity moves in direction D. The
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singleton robots of the chain in D direction move in the direction

D.

As a consequence of the subroutine Spread(𝑟 ), one can observe

that, if the chain configuration contains one good chain and one

bad chain or two bad chains then, after executing the subroutine

Spread(𝑟 ) the chain configuration may get hampered and the con-

figuration will become a non-chain configuration.

Subroutine ReconstructChain(𝑟 ) : If the configuration is not

chain configuration (Fig 4) then the configuration must contain one

chain block and one non-chain block . Let D be the direction in

which the chain block occurs. If there is no missing edge in both

blocks (chain block or non-chain block) or if the missing edge is in

the non-chain block, then all singleton robots on the chain block

move away from the block head in the direction D and all robots

on block head moves towards the direction D. If the missing edge

is in the chain block, then the singleton robots in the non-chain

block move away from the block head in direction D′, opposite
direction of D Now we discuss the correctness of the algorithm

Algorithm 3: ReconstructChain(𝑟 )
1 if 𝑟 is on block head then
2 if no edges are missing ∨ missing edge is in non-chain block then
3 𝑟 moves in the direction of the chain block

4 else
5 if no edges are missing ∨ missing edge is in non-chain block then
6 if 𝑟 is on chain block then
7 𝑟 moves away from block head;

8 else if missing edge is in chain block then
9 if 𝑟 is on non-chain block then
10 𝑟 moves away from the block head;

D-𝑘-D DynamicRing. One can prove that, at any round 𝑡 , if a robot

𝑟 executes the subroutine Spread(𝑟 ) then at the end of the round

𝑡 the number of singleton nodes will increase. Moreover, While

executing Algorithm 1, if𝐶 (𝑡) be a non-chain configuration but not

target configuration at round 𝑡 , then the configuration 𝐶 (𝑡) must

have two blocks (chain block and non-chain block).

If𝐶 (𝑡) is a chain configuration while𝐶 (𝑡 + 1) is a non-chain con-

figuration during the execution of Algorithm 1. Then the following

statements are true.

(1) In𝐶 (𝑡+1), there exists a directionD such that𝑑D (𝐻,𝐻+1) =
1, where 𝐻 and 𝐻 + 1 are the block head and the adjacent

occupied node of block head in direction D
(2) 𝑑D (𝑣𝑥 , 𝑣𝑦) = 𝑘 , for all consecutive occupied nodes on the

block in direction D where 𝑣𝑥 ≠ 𝐻 .

(3) 𝑑D′ (𝑣𝑥 , 𝑣𝑦) = 𝑘 for all consecutive occupied nodes 𝑣𝑥 and 𝑣𝑦
on the block in the direction D′, where D′ be the opposite
direction of D.

Again if 𝐶 (𝑡) is a non-chain configuration for some 𝑡 > 0, which is

not the target configuration. Then the following are true.

(1) Let 𝑑D (𝐻,𝐻 + 1) = 𝑑 < 𝑘 where 𝐻 is block head and 𝐻 + 1
is the adjacent occupied node of 𝐻 in direction D, where

D be the direction of the non-chain block in 𝐶 (𝑡). Then
𝑑D (𝐻 ′, 𝐻 ′ + 1) = 𝑑 + 1 in 𝐶 (𝑡 + 1). Here 𝐻 ′ is either block
head or multiplicity in 𝐶 (𝑡 + 1) and 𝐻 ′ + 1 is the adjacent
occupied node of 𝐻 ′ in direction D in 𝐶 (𝑡 + 1).

(2) Let 𝐶 (𝑡 ′) be the first chain configuration (if exists) or the

target configuration after 𝐶 (𝑡), where 𝑡 ′ > 𝑡 . Then 𝑡 ′ − 𝑡 ≤
𝑘 − 1.

Theorem 5.1. The algorithm D-𝑘-D DynamicRing will terminate

in 𝑂 (𝑛) rounds.

From Theorem 5.1 and Corollary 3.4 we have the following result:

Theorem 5.2. AlgorithmD-𝑘-D DynamicRing terminates inΘ(𝑛)
rounds for any 1-interval connected ring with 𝑛 nodes.

If robots have no chirality agreement, then by algorithm No-

Chir-Preprocess proposed in [1] by Agarwalla et al. can be used by 𝑙

co-located robots to agree on a particular direction before starting

the execution of D-𝑘-D DynamicRing. This way we can solve the

D-𝑘-D on a dynamic ring even when the robots do not agree on

chirality.

6 Conclusion
The primary aim of this paper is to introduce the D-𝑘-D problem, a

generalization of all previously studied variants of the dispersion

problem for mobile robots. The paper begins by discussing the

necessity of a fully synchronous scheduler to solve this problem,

providing a lower bound on the time required, which is Ω(𝑛) for a
dynamic ring with 𝑛 nodes. Then the paper presents an algorithm,

D-𝑘-D DynamicRing, which solves the problem in optimal time for

a rooted initial configuration, assuming chirality within the context

of a 1-interval connected ring under a fully synchronous scheduler.

Additionally, for robots without chirality agreement, the problem

can still be solved using a known technique ([1]). Several open

problems related to this variant of dispersion for further research

are to consider in arbitrary networks. Interestingly, when extending

the technique used to solve D-2-D in [4] by Kaur et al., the time

and memory complexity becomes exponential even when 𝑘 = 3,

making it an intriguing subject for study in arbitrary networks.

Another research direction involves examining this variant under a

limited visibility model, where a robot can only see up to a distance

𝜙 < 𝑛
2
from its position on a dynamic ring.
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